THE MOIST SOIL TEST

Laboratory Perspective Ron Gelderman SDSU

Test UNDRIED Soil Samples

BY J. J. HANWAY

IOWA STATE UNIVERSITY

THE MOIST SOIL TEST - REVIEW

Two methods for handling

Direct method

- for loamy-coarse textures [soils that will pass thru a 10 mesh (0.08") screen], peats (or soils that slurry won't work)
- 1)Pass thru a 10 mesh screen
- 2)Determine soil moisture
- 3)Weigh equivalent dry wt needed for test
- 4) Adjust molarity and volume of extracting solns for moisture content?
- 5) Direct Method is a weight to volume extraction compared to dry which is a volume (scoop) to volume extraction

THE MOIST SOIL TEST EXTRACTION REVIEW

B) Slurry method

- difficult to obtain representative sample with very fine wet soils or with large clods with direct method.
- Process so will pass thru 6-7 mesh (1/4") screen
- 2) Subsample for moisture
- Add 100 g dry equivalent to container and enough water to bring to 200 grams water (1:2 soil/water ratio)
- 4) Stir to break up clods and provide uniform suspension
- 5) Pipette equivalent dry wt. from slurry needed for analysis
- 6) The volume and molarity of extraction soln needs to be adjusted for the amount of water in suspension.

THE MOIST SOIL TEST EXTRACTION REVIEW

- B) Slurry method (cont)
 - 7) The pipette needs to be calibrated for volume of suspension to produce dry equivalent wt needed.
 - 8) Is a volume (pipette) to volume extraction similar to dry which is a volume (scoop) to volume extraction

To insure a good sample of field soil . . .

... not dry, crushed samples of "dirt".

ELECTRIC MIXER is used to prepare the soilwater slurry for sampling.

Figure 1. Electrical stirrers used in making a uniform soil suspension in the Slurry Method.

Figure 2. Drawing off a soil subsample for testing from cylinders on a rotator.

Barnes & Maddox Soil Weight by Pipette Volume

Mix and stir

Moist Test - Slurry

Moist Test - Slurry

Barnes & Maddox Soil Weight by Pipette Volume

Moist Test - Slurry

Pipette Volume vs. Soil Weight for Clay Soils

Scoop Size vs. Sample Weight

air dry soil, dry method K vs. slurry K, mean three runs – Amm. Ac.K

Dry vs. Moist K

Dry					Moist						
		nples fro erent Ext				Samples from 3 Different Extracts					
Soil	Rep I	Rep II	Rep III	Mean	CV	Rep I	Rep II	Rep III	mean	CV	
	ppm K				%	ppm K				%	
Barnes SiL	177	177	179	178	0.65	144	149	147	147	1.72	
Maddox SL	234	237	216	229	4.96	205	197	200	201	2.01	

ISU Laboratory, Duplicate Analysis Comparison

Summary Laboratory Moist K method

- 1) Slurry Calibration of dry soil weight in subsample
- Slurry Extraction molarity and volume correction is needed Direct - Would be more difficult to correct molarity and volume because every soil could be different
- 3) Precision of moist test seems to be similar or better than dry
- 4) Additional work
 - within and among Lab variability
 - operator variability (advantage for automated)
 - Speed of mixing and stirring, where subsample taken
 - Same soils year to year or seasonal variability

Bottomline - The moist procedure needs to give reproducible results, so if were analyzing the calibrated K soils, for example, would be getting highly correlated results with original data. Need to be assured we are all doing the same test.

Thank You

Antonio Mallarino - sharing his data

Cory Smith – Technical Lab skill